2010/10/24

視訊壓縮標準概述.1.5 量化

1.5 量化

利用 DCT 轉換除去空間上的相關性,並配合量化 (quantized) 程序去除不重要的資訊,量化過程會對視訊品質產生失真現象。經由離散餘弦轉換轉換後的能量會集中在幾個低頻係數的數值上,而高頻的係數則會趨近於零。我們再以量化(Quantization)的手段,縮減一群大範圍的資料到較小的範圍。使得這些高頻係數儘量變為零,所以,量化的結果是稀疏陣列,以利進一步的壓縮。量化會造成視訊壓縮失真,並非是DCT。

clip_image003

圖6.12 不同係數個數還原後的失真度比較

由上圖可以觀察到,經由量化後儲存不同數量的係數,在經由反離散餘弦轉換後,係數儲存越少的,其失真度較嚴重,不過若係數到達一定的數量之後,增加係數數量會增加儲存空間與傳輸時間,但對於影像品質的增加有限。

解壓縮時,經量化後的數值,再經反向量化(inverse quantization)、IDCT(inverse discrete cosine transformation)及動態補償後,即可得到一近似原先區塊值的區塊,但其中不易被人眼察覺的高頻信號已在此過程中被去除。量化在上述過程中主要有兩個功能,其一是讓原本已經很接近零的值儘量變成零,其二則是使得原來非零係數的分布範圍變小,有助於壓縮。但由於量化後的資料再還原時與原來的資料不會全然相同,因此視訊壓縮後失真的程度,可以說主要便取決於量化位階(quantization scale)的選取。一般的原則是,高頻訊號人眼不易察覺,故應採用較大之scale,使其儘可能成為零;而低頻訊號應採用較小之scale,使其還原後不至於和原來的資料相差太多,如下圖為MPEG-2的預設量化矩陣。

clip_image004

圖6.13 MPEG-2的預設量化矩陣

視訊壓縮標準概述.1.4 線性轉換

1.2 線性轉換

對於許多壓縮系統,第一步工作就是識別存在於視頻信號的空間冗餘,這是利用分別對整幅影像做DCT(Discrete Cosine Transform)來完成。

在線性代數中所指的線性轉換,有兩個特性就是轉換前後加法運算不變,且純量乘法不變。而在函數空間上,其維度為無限大,多項式函數使用函數空間其中一組基底,變換基底的動作就叫做線性轉換,最顯而易見的例子就是座標轉換,座標轉換就是變換不同的基底。常見的傅利葉轉換就是轉換到以三角函數sin與cos為基底的表示法,但傅利葉轉換並不適合視訊壓縮來使用,一個優秀的線性轉換具有以下幾個特性:

- 經線性轉換後,非零數值可以局限在矩陣某一區域,減少因量化造成的資訊損失。

- 運算必需簡單,容易由DSP實作,進而容易設計硬體來加速。

- 經反轉換運算後,在區塊邊緣不能有明顯的假輪廓。

故經眾多學者實驗後,發現只存有cos項的離散餘弦轉換(DCT;Discrete Cosine Transform)較符合以上幾個條件,故MPEG-2仍採用離散餘弦轉換。其他如小波轉換則運用於其他更高階的影像或視訊標準中,如JPEG-2000。

離散餘弦轉換是一個無損的,可逆的數學過程,它把空間幅度資料轉化為時間頻率資料。在用於視頻壓縮時,這一運算過程是以亮度採樣和相應的色差採樣構成的8*8 點的方塊單位進行。

clip_image002

圖6.10 MPEG-2所使用的標準DCT矩陣

clip_image004

圖6.11 轉換前後的矩陣係數

轉換方式Y=AXAT ,由上圖可觀查到轉換前後矩陣內的係數約略相同大小,轉換後右邊矩陣內的大係數集中於右上角。

視訊壓縮標準概述.1.3 動態補償

1.3 動態補償

而動作補償之成功與否在於我們是否能正確的估計出方塊的動作向量,這個運算叫做動態評估(motion estimation),並且要能在短時間內就完成,同時這也是編碼器的優劣所在,特別是在即時壓縮的廣播領域,因為不像離線壓縮時,可以花費較長時間來找尋最適當的動作向量,即時壓縮的廣播領域必需在固定時間內完成壓縮,否則收視端將無畫面可供顯示,故同位元率的狀況下,離線壓縮的視訊品質一般較即時壓縮來的精緻。一般數位壓縮的廣播較類比格式的壓縮有數秒的時間差,正是編碼氣用於壓縮的時間。常用的動態評估有完全搜尋、對數搜尋、三步驟搜尋、階級式搜尋。因為MPEG-2 只定義了解碼器,因此不同的應用可以選擇適合的方法,來做最佳化。

視訊壓縮標準概述.1.2 動態評估

1.2 動態評估

為了取得高壓縮比效果, MPEG 採用了複合式多種壓縮技巧,首先是以區塊為基礎的動態補償 (block-based motion compensation) 方法,利用前一畫面至目前畫面內容之預測 (prediction) ,或是由前一畫面其下移畫面至目前畫面內容之內插預測 (interpolation prediction),計算預測的誤差值 (差異值) 。

clip_image004

圖6.7 相鄰畫面間的差易性

因為連續的畫面間通常存在有極大的相關性,如果我們把像素的運動軌跡都可以描述出來,那麼我們只需要編碼、並送出第一個畫面及軌跡的資訊即可。相鄰畫面間的差易性極小,若顏色深度為8bit,共256色階時,相減之後在全部位置上同時加上128。事實上我們是以區塊為基礎來描述運動的向量,我們稱為動作向量(motion vector)。利用動作向量可以幫助我們做畫面間的動作補償(motion compensation)。

clip_image006

圖6.8 動態向量

clip_image008

圖6.9 動態評估

視訊壓縮標準概述.0

眼睛是靈魂之窗,視覺是未來人類獲取資訊最主要的感觀,視頻資料為多媒體資訊中資料量最龐大的一員,此領域已成為目前世界上技術開發和研究的焦點,儲存視訊資料需要最複雜的壓縮技術,同時也代表壓縮與解壓縮時需要較多的CPU時間,目前業界已經制定出許多處理影像訊號壓縮及編碼的技術。

MPEG 的標準由 ISO (International Standards Organization) 所制定,全名為 Moving Pictures Experts Group,這些團隊制定了包括 MPEG1、MPEG2、MPEG4 等標準。

MPEG1 制定於1993年,主要用途為:視訊會議、影像電話、電腦遊戲與CD-ROM。MPEG1被設計來支援大部份的影像與 CD-ROM 的音效,傳輸速度為 1.5 Mbps (30 fps),對類比視訊到數位視訊儲存的產生重大革新。

由於MPEG1壓縮率過低,畫質不如傳統類比視訊儲存媒介,故沒有過多久,MPEG2的標準於1994年被制定出來,MPEG-2 相容於 MPEG-1。MPEG-2是一個非常優秀的壓縮演算標準,加強 MPEG-1 影像品質不足的地方。因此,MPEG2更能昇任其它工作環境,例如:DVD、HDTV、視訊廣播。隨著半導體技術的提升,MPEG2的軟硬體壓縮設備更為低廉,MPEG2直至今日仍佔據視訊壓縮主流角色。

clip_image002

圖6.1 ITU-T規範和ISO/IEC MPEG標準的演進歷程

隨著行動裝置以及大尺寸薄型顯示裝置的普及,更合適的MPEG4標準在1998年被提出,包含第十部份的H.264,目前仍持續在增訂中,主要的應用用途比較廣,制定了由低速裝置到高速裝置所有應用標準,包括了視訊會議、影音郵件、無線裝置等等,支援的傳輸速度為 8Kbps ~ 35Mbps。

本章對於目前使用量最多的視訊壓縮技術MPEG2做一個概述,最後簡介目前地表最強大的壓縮技術─H.264如何對視訊壓縮後的畫質有大符度的改善。